Fach Mathe

Klassen 1-4
Schriftlich Plus
Schriftlich Teilen
Schriftlich Malnehmen
Schriftlich abziehen

Klasse 5
Flächeninhalt
Größen und Einheiten
Rechnen mit Größen
Quadrat
Klammeraufgaben
Rechteck
Römische Zahlen
Zahlensysteme

Klasse 6
Brüche
Brüche addieren
Bruch und Kommazahl
Brüche kürzen
Längere Bruchaufgaben
Brüche malnehmen
ggT
kgV
Primfaktorzerlegung
Quader
Teilbarkeit
Teilermenge
Würfel

Klasse 7
Antiproportionaler Dreisatz
Antiproportionalitäten
Dreieck
Dreisatz
Inkreis
Konstruktionen
Proportionalitäten
Prozentrechnung
Terme vereinfachen
Umkreis
Zinsrechnung

Klasse 8
Bruchterme
Gleichungen lösen
Kreis
Parallelogramm
Raute

Klasse 9
Bruchgleichungen
Gleichung auflösen
Gleichungssysteme
Quadratische Gleichungen
Quadrieren
Rechtwinkliges Dreieck
Strahlensatz
Wurzelgleichungen
Wurzelterme
Wurzel ziehen

Klasse 10
Kegel
Kegelstumpf
Kreisbogen
Kugel
Potenzrechnung
Prisma
Pyramide
Pyramidenstumpf
Zylinder

Geometrie

Fach Physik

 

 

 

 

 


Suchen innerhalb von Mathepower.com:


Benutzerdefinierte Suche

Bruch

Du hast Mathefragen? Schau immer erst bei Mathepower.com!
Wozu braucht man Brüche?
Erst einmal ein Beispiel: Stellt euch vor, man will zu viert einen Kuchen essen. Wie viel Kuchen bekommt dann jeder? Was man rechnen muss, ist , so viel ist klar. Aber was kommt da raus? In der Grundschule hätte man jetzt gesagt, Rest . Das bringt uns aber nicht viel weiter. Stattdessen schaffen wir uns eine neue Zahl namens (gesprochen: ein Viertel). Wenn ihr euch vorstellen wollt, wie viel das ist, malt euch doch einmal einen Kuchen auf und teilt ihn ihn vier gleich große Stücke.
Und was ist so ein Bruch?
Was wir gerade mit dem Kuchen gemacht haben, kann man mit allen Zahlen machen: Man stelle sich vor, man habe zwei natürliche Zahlen und wolle die durcheinander teilen, aber es geht nicht auf. Was macht man also? Man stellt sich einfach vor, man könnte es, und denkt sich eine Zahl aus, die das Ergebnis dieser Division ist. Also bedeutet der Bruch nichts anderes als ' das Ergebnis der Rechnung durch '. Die Zahl oben im Bruch nennt man Zähler, die unten Nenner. Beim Bruch ist der Zähler also und der Nenner .
Und wie rechnet man mit solchen Brüchen?
Erst mal überlege man sich: Es gibt verschieden aussehende Brüche, die die gleiche Zahl meinen. Zum Beispiel ist oder , weil und beide gerade ergeben. und sehen also verschieden aus, stellen aber beide die gleiche Zahl dar. Einen Bruch in einen anderen umzuwandeln, der die gleiche Zahl darstellt, nennt man erweitern oder kürzen.

Will man Brüche addieren oder abziehen, so muss man sie vorher gleichnamig machen, das heißt, sich einen gemeinsamen Nenner für beide Brüche überlegen. Das schafft man, in dem man sich das kleinste gemeinsame Vielfache der beiden Nenner überlegt.

Will man Brüche malnehmen, so nimmt man einfach Zähler mit Zähler und Nenner mit Nenner mal. Brüche teilt man, indem man bei dem Bruch, durch den man teilt, Zähler und Nenner vertauscht und dann malnimmt.
Wie nennt man den Zahlbereich, zu dem auch die Brüche (größer oder kleiner Null) gehören?
Das sind die rationalen Zahlen.



Gefällts dir hier? Mathepower zu den Favoriten hinzufügen und wiederkommen!