Fach Mathe

Klassen 1-4
Schriftlich Plus
Schriftlich Teilen
Schriftlich Malnehmen
Schriftlich abziehen

Klasse 5
Flächeninhalt
Größen und Einheiten
Rechnen mit Größen
Quadrat
Klammeraufgaben
Rechteck
Römische Zahlen
Zahlensysteme

Klasse 6
Brüche
Brüche addieren
Bruch und Kommazahl
Brüche kürzen
Längere Bruchaufgaben
Brüche malnehmen
ggT
kgV
Primfaktorzerlegung
Quader
Teilbarkeit
Teilermenge
Würfel

Klasse 7
Antiproportionaler Dreisatz
Antiproportionalitäten
Dreieck
Dreisatz
Inkreis
Konstruktionen
Proportionalitäten
Prozentrechnung
Terme vereinfachen
Umkreis
Zinsrechnung

Klasse 8
Bruchterme
Gleichungen lösen
Kreis
Parallelogramm
Raute

Klasse 9
Bruchgleichungen
Gleichung auflösen
Gleichungssysteme
Quadratische Gleichungen
Quadrieren
Rechtwinkliges Dreieck
Strahlensatz
Wurzelgleichungen
Wurzelterme
Wurzel ziehen

Klasse 10
Kegel
Kegelstumpf
Kreisbogen
Kugel
Potenzrechnung
Prisma
Pyramide
Pyramidenstumpf
Zylinder

Geometrie

Fach Physik

 

 

 

 

 


Suchen innerhalb von Mathepower.com:


Benutzerdefinierte Suche

Primfaktorzerlegung




zu zerlegende Zahl:




Du hast Mathefragen? Schau immer erst bei Mathepower.com!
Erläuterung:
Bei der Primfaktorzerlegung wird eine Zahl als das Produkt ihrer Primfaktoren, also als ein Produkt aus Primzahlen dargestellt.
Für ausführliche Infos zum Thema klick hier.

Primfaktorzerlegung


Was ist eine Primfaktorzerlegung?
Eine Primfaktorzerlegung ist, wenn man eine natürliche Zahl nur als Produkt von Primzahlen schreibt. Zum Beispiel kann man 12 als 2*2*3 schreiben oder 16 als 2*2*2*2. Dabei heißen die einzelnen Faktoren, aus denen das Produkt besteht, Primfaktoren. Die Primfaktordarstellung einer Zahl ist bis auf die Reihenfolge der Primfaktoren eindeutig.

Wie mache ich eine Primfaktorzerlegung?
Das ist recht einfach: Man testet einfach, durch welche Primzahlen sich eine Zahl ohne Rest teilen läßt. Läßt die Zahl sich durch eine Primzahl ohne Rest teilen, so kann man mit dem Divisionsergebnis weiterrechnen, und das so lange, bis man als Divisionsergebnis eine Primzahl hat.
Beispiel: Primfaktorzerlegung von 48.
Zuerst testet man 48 auf Teilbarkeit durch 2. 48 ist durch 2 teilbar, und 48=2*24. Auch 24 ist durch 2 teilbar; es gilt: 24=2*12; also 48=2*2*12, und weiter 48=2*2*2*6=2*2*2*2*3. Da 3 eine Primzahl ist, kann man nun aufhören.
Anderes Beispiel: Primfaktorzerlegung von 18.
Es gilt: 18=2*9. 9 ist nicht durch 2 teilbar; also testet man mit der nächsten Primzahl weiter: 9 ist durch 3 teilbar, und 9=3*3, also 18=2*3*3.


Primfaktorzerlegung

Geben Sie hier eine beliebige ganze Zahl ein. Diese wird dann in Primfaktoren zerlegt. Ein Primfaktor ist ein Faktor, der eine Primzahl ist. Mathepower berechnet sämtliche Mathematikaufgaben der Schuljahre 1-10! Lassen Sie hier eine Primfaktorenzerlegung durchführen.



Gefällts dir hier? Mathepower zu den Favoriten hinzufügen und wiederkommen!